Effect of Cichorium intybus L leaves and Spirulina plantensis Algae powder against Osteoporosis in Female Rats induced by Dexamethasone

Safaa T. Gohari
Nutrition and Food Science, Home Economic Dept., Faculty of Specific Education, Ain Shams Univ., Cairo, Egypt- email: drsafaa@sedu.asu.edu.eg

Abstract
Osteoporosis is a multifactorial skeletal disease characterised by a loss of bone mass and alteration of bone tissue's microarchitectural integrity. The current study looked at the effects of Cichorium intybus L (CH) leaves and Spirulina plantensis algae (SP) powder on Dexamethasone-induced osteoporosis in female rats (DEX). Dried SP algae had a larger amount of protein and fat than CH leaves, according to chemical analysis. On the other hand, CH leaves, were distinguished by a higher percentage of carbohydrates, fibre, ash, and moisture than dried SP algae. Dried SP algae and CH leaves powder were also high in calcium and phosphorus (1341.561.29 and 887.002.0mg/100g) and (295.141.10 and 1871.0mg/100g), respectively.

Forty-eight non-pregnant female albino rats were divided into two groups: the first main group (8 rats) was fed a basal diet (B.D.) and served as a negative control (-ve), and the second main group (40 rats) was injected intramuscularly with DEX at a dose (7 mg/kg b.wt.) once weekly for four weeks to cause osteoporosis, then divided into five subgroups of eight rats each: As a positive control (+ve), group (2) was fed a basal diet, group (3) was fed a B.D. containing 4% dried SP algae, group (4) was fed a B.D. containing 6% dried SP algae, group (5) was fed a B.D. containing 5% CH leaves powder, and group (6) was fed a B.D. containing 10% CH leaves powder. When compared to the positive control group, all osteoporosis groups treated with CH leaves powder (5 and 10%) and dried SP algae (4 and 6%) had significant decreases in liver enzymes, kidney function, calcium and phosphorus in bone, ionised calcium, bone mineral density, and bone mineral content assay. The best results were obtained in groups treated with 10% CH leaves powder and 6% dried...
SP algae. After two months, x-rays and histopathology of the positive control group revealed bone loss in various parts such as the fibula, tibia, and femur, as well as bone demineralization and osteoporosis. In comparison to the positive control group, these findings revealed that CH leaves powder and dried SP algae treated degrees of osteoporosis.

Keywords: Osteoporosis; Glucocorticoids; chicory; Microalgae; DEXA; x-ray and histopathology
Introduction

Dexamethasone (DEX) is a type of glucocorticoid (GC) that is widely used to treat allergic disorders, ulcerative colitis, arthritis, pulmonary disorders, and organ transplantation due to its potent anti-inflammatory and immunomodulatory effects. (Vandewalle et al., 2018). Despite the therapeutic effects of this drug, its frequent use inevitably results in a variety of health problems. Among these is a severe form of secondary osteoporosis that affects 30-50 percent of GCs therapy patients. (Nuti et al., 2019). The pathological mechanisms of GCs-induced bone formation include decreased differentiation and maturation of osteoblasts and increased life span of osteoclasts. (Li et al., 2015). Osteocytes are also affected, with decreased cell function and increased apoptosis resulting in impairment of their ability to detect and repair bone micro damage (Fraser and Adachi, 2009). The combination of increased bone resorption and decreased bone formation may explain the early and rapid loss of bone mineral density (BMD) and bone strength/quality in GCs therapy patients. (Dobrowolski et al., 2017). Currently, the use of medicinal plants has emerged as one of the most popular and preferred complementary and alternative medicine modalities. Certain vegetables and fruits have been shown to be essential for maintaining bone mass and preventing osteoporosis. (Rajput et al., 2018).

Chicory (Cichorium intybus) is a member of the Asteraceae family, and its leaves are commonly used in salads and as cooked vegetables in Mediterranean cuisines. (Jancic et al., 2017). Previous research suggested that chicory has antitoxic, hypoglycemic, and a variety of other pharmacological effects, establishing chicory as a functional food. (Azzini et al., 2018). Chicory was planted by the ancient Egyptians to be used as a medicinal plant. It was used due to its numerous beneficial effects such as hepatoprotective, neuroprotective, hypolipidemic, antioxidant, and anti-inflammatory properties. (Keshk et al., 2019). Chemical analysis of fresh chicory revealed that it is primarily composed of inulin and sucrose (68 and 14 percent, respectively), with minor amounts of protein, cellulose, and ash. (Hassan and Yousef, 2010). Chicory contains alkaloids, inulin, sesquiterpene lactones, coumarins, chlorophyll pigments,
unsaturated sterols, flavonoids, saponins, and tannins in all parts of the plant. (Abbas et al., 2015).

Many microalgae have been studied, but spirulina is thought to be the most unique due to its high protein content (65 to 70%) and high percentage of amino acids. (Liestianty et al., 2019). It's a good source of micro and macronutrients like minerals, vitamins, gamma-linolenic acid, phycocyanin, and sulfated polysaccharides. (Ljubic et al., 2018). So it is consumed as a functional food and safe nutritional supplement in the right amount. It is worth noting that the term functional refers to foods that have been shown to help specific functions in the body, leading to enhance health and/or reducing the risk of disease (Rodriguez et al., 2018).

Spirulina has gained popularity due to its ability to stimulate mineral absorption through its effect on intestinal microflora. (Siddiqui, 2017). This evidence suggests that spirulina can influence calcium and bone metabolism, though no studies have been conducted to assess spirulina’s activity on bone metabolism in vivo. The green alga has also been investigated as a potential source of macronutrients as well as a viable source of oxygen in the space environment. (Vandewalle et al., 2018). Plants, seaweeds, microalgae and food by-products are the most important sources of functional compounds such as dietary fiber, phenolic compounds, flavonoids, oils, plant sterols, proteins, prebiotics, probiotics, anthocyanins, carotenoids and many others (Da Silva et al., 2016).

The aim of this research was to investigate the effect of Cichorium intybus L leaves and Spirulina plantensis Algae powder against Osteoporosise in female Rats induced by Dexamethasone

2. MATERIALS AND METHODS

2.1. MATERIALS

Cichorium intybus L leaves and Spirulina plantensis algae were obtained from El-nada farm 59. Egypt, Alex. Desert road. Aboghaleb and were identified by El-nada farm laboratory for analyses. While, Commercial kits were obtained from Biodiagnostic Co. Dokki, Egypt. DEX sodium phosphate was obtained from El-Gomhoreya Company for Tarading Drugs, Chemical and Medical Instruments
2.2. Methods

2.2.1. Proximate chemical composition of *Cichorium intybus* L leaves and *Spirulina platensis* algae

Proteins, fat, ash, fiber and moisture were determined according to AOAC, (2015). Carbohydrate contents were estimated by the difference.

2.3. Biological experiment

Forty-eight non-pregnant female albino rats of Sprague Dawley weighing 150 ± 10 g were obtained from Agricultural Research Center, Giza, Egypt. For 8 weeks, the animal groups were kept in an environment of filtered, pathogen-free air, water, and a temperature of 20-25°C, with a 12 hour light/dark cycle and a light cycle (8-20 h) and a relative humidity of 50%. All rats were fed a standard diet for one week. The basal diet included 14% casein, 10% sucrose, 4% corn oil, 5% fibre (cellulose), 3.5 percent mineral mixture, 1% vitamin mixture, 0.25 percent choline chloride, 0.3 percent D-L methionine, and 61.95 percent corn starch. (Reeves *et al.*, 1993). Before beginning the experiment, allow for acclimatisation. All experimental procedures were carried out in accordance with international guidelines for laboratory animal care and use. The experiment was carried out at the Agricultural Research Center in Giza, Egypt.

2.3.1. Experimental design

After one week of adaptation, the rats were divided into two groups: the first main group (8 rats) was fed a basal diet as a control negative (-ve), and the second main group (40 rats) was injected intramuscularly with DEX at a dose (7 mg/kg b.wt.) once weekly for four weeks to cause osteoporosis according to (Thakur *et al.*, 2013) then divided into five sub-groups of eight rats each: As a positive control (+ve), group (2) was fed a basal diet, while group (3) was fed a basal diet plus 4% dried SP algae. Group (4) was fed a basal diet plus 6% dried SP algae, Group (5) was fed a basal diet plus 5% CH leaves powder, and Group (6) was fed a basal diet plus 10% CH leaves powder.

Animals from each group were sacrificed at the end of the experiment, and the blood was collected in a clean dry centrifuge tube, left at room temperature until the clot formed, completely
retracted, and then centrifuged to separate serum, before being stored in a plastic vial (well stoppered) until analysis.

3.4. Biochemical Analysis

3.4.1. Biological Determination

Biological evaluation of the different tested diets was carried by determination of food intake (FI), body weight gain% (BWG %) and organs weight / body weight% according to Chapman et al., (1959).

\[
\text{BWG\%} = \left(\frac{\text{Final weight} - \text{Initial weight}}{\text{Initial weight}} \right) \times 100
\]

Organ weight / body weight % = \left(\frac{\text{Organ weight}}{\text{Final weight}} \right) \times 100

3.4.2. Biochemical Analysis

Serum uric acid was determined by Barham and Trinder, (1972) using a spectrophotometer (model DU 4700) adjusted at 510 nm. Serum urea was determined according to the method described by Fawcett and Scott (1960) using a spectrophotometer (model DU 4700) adjusted nm 550 nm. Serum creatinine was determined by (Tietz, 1986) using a spectrophotometer (model DU 4700) adjusted at 510 nm. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were determined calorimetrically using spectrophotometer (model DU 4700) at 505 nm according to the method of (Reitman and Frankel, 1957). Alkaline phosphatase (ALP) activity was determined calorimetrically using a spectrophotometer (model DU 4700) at 510 nm according to the method of (Belfield and Goldberg, 1971). Calcium O-cpcactivities were determined calorimetrically using a spectrophotometer at 340 nm according to the method of (Young, 1990).

2.5. Bone mineral content (calcium and phosphors)

The bone from the left femur was dried overnight at 100°C. To obtain the ash, the femur was incinerated for 12 hours at 1000°C in the Muffle apparatus. The ash was weighed, solubilized in 0.1 Mol/L HCL (Yang et al., 2008) and quantitatively transferred into a volumetric flask, which was then filled to 100 ml with 0.1 Mol/L HCL. Using an atomic absorption spectrophotometer, the solutions were used to determine the calcium content of bone ash.
spectrophotometer was used to determine the phosphorus content of bone ash.

3.5. Bone mineral density and bone mineral content assay

Each animal's right femur was dissected and carefully cleaned before measuring bone mineral density (BMD) and bone mineral content (BMC) by dual-energy x-ray absorptiometry (DEXA) using an XR 46, version 3.9.6/2.3.1 instrument equipped with dedicated software for small animal measurements in the bone mineral density unit, Medical Service Unit, National Research Center, Dokki, Egypt to measure the bone mineral content (BMC, g/cm2) and bone area (BA, cm2). The BMD was calculated as BMC/BA (Bagi et al., 2011).

3.7. Histopathology Investigation

Autopsy samples were taken from the bones and joints of rats in different groups and fixed in 10% formal saline for 24 hours before being decalcified with formic acid. Washing with tap water was followed by dehydration with serial dilutions of alcohol (methyl, ethyl, and absolute ethyl). Specimens were cleared in xylene and embedded in paraffin for 24 hours at 56 degrees in a hot air oven. Slidge microtome was used to prepare paraffin bees wax tissue blocks for sectioning at 4 microns thickness. Tissue sections were collected on glass slides, deparaffinized, and stained with hematoxylin and eosin for examination under a light electric microscope. (Banchroft et al., 1996)

3.8. Scanning X-ray

Radiographic views were undertaken for each rat including lateral, ventrodorsal by using Fischer x-ray apparatus (40 Kilovolt, 100 mA and 100cm FFD) (Farrow, 2003).

3.9. Statistical Analysis

The statistical analysis was carried out by using SPSS, PC statistical software (version 25.0; SPSS Inc., Chicago. USA). The results were expressed as mean ± SD. Data was analyzed by one-way analysis of variance (ANOVA). The Differences between means were tested for significance using Least Significant Difference (LSD) test at p≤0.05 (Snedecor and Cochran, 1980).
3. RESULTS AND DISCUSSION

3.1. Proximate chemical composition of *Cichorium intybus L* leaves and dried *Spirulina plantensis* algae

Table (1) shows the chemical composition percentages of CH leaves and dried SP algae. The results showed that dried SP algae had a higher percentage of protein and fat (61.19±0.27 and 5.22±0.26%, respectively) than CH leaves (15.34±0.31 and 5.22±0.26%), which is consistent with previous research. *(Zeller et al., 2013)*. While CH leaves had a higher percentage of carbohydrates, fibre, ash, and moisture (42.07±0.28, 17.36±0.08, 11.65±0.11, and 8.35±0.05%) than dried SP algae (18.20±0.55, 2.03±0.06, 9.59±0.42, and 2.21±0.25%). According to *Richmond (2004)* Spirulina contains 50-70 percent protein, 20 percent carbohydrate, 5 percent lipid, 7 percent minerals, and 3 to 6 percent moisture. As a result, unlike proteins obtained from meat and dairy products, it is a protein resource that is low in lipids, low in calories, and free of cholesterol. Spirulina is an energy supplement for the elderly. It is consumed by 73% of people over the age of 50 in Japan. Spirulina has only 36 calories per 10 grammes. *(Seshadri and Jeeji 1992)*. Also, the results of CH leaves presented in this study were found to be in the range of the value reported by *Nwafor et al., (2017)*, *Hamid et al., (2021)* and *Perović et al., (2021)*

Table (1): Major chemical constituent of *Cichorium intybus L* leaves and dried *Spirulina plantensis* algae %

<table>
<thead>
<tr>
<th>Samples</th>
<th>Major chemical constituent (%)</th>
<th>Protein</th>
<th>Fat</th>
<th>Moisture</th>
<th>Ash</th>
<th>Fibre</th>
<th>Carbohydrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH leaves powder</td>
<td></td>
<td>15.34±0</td>
<td>5.22±0</td>
<td>8.35</td>
<td>11.65</td>
<td>17.36±0.08</td>
<td>42.07±0.28a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.31b</td>
<td>±0.26b</td>
<td>±0.05a</td>
<td>±0.11a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dried SP algae</td>
<td></td>
<td>61.19±0</td>
<td>6.77±0</td>
<td>2.21±0.2</td>
<td>9.59±0.42</td>
<td>2.03±0.06</td>
<td>18.20±0.55b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±0.27a</td>
<td>±0.09a</td>
<td>±0.2b</td>
<td>±0.42b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each value represents the mean value± SD. Mean's value in the same column sharing the different superscript letters are significant different at P ≤ 0.05. CH: *Cichorium intybus* SP: *Spirulina plantensis*
Figure (1) depicts the content of important minerals in dried SP algae and CH leaves powder, which were rich in calcium and phosphorus (1341.56±1.29 and 887.00±2.0 mg/100g) and (295.14±1.10 and 187±1.00 mg/100g), respectively. The calculated Ca: P ratios of dried SP algae and CH leaves powder were 1.51:1 and 1.58:1, respectively, which are within the European Society for Paediatric Gastroenterology Hepatology and Nutrition's recommended range of 1:1–2:1 (weight/weight) to ensure optimal bone health and development. (Koletzko et al., 2005).

Also, results showed that dried SP algae contained a higher percentage of Potassium, Magnesium, and Iron (1121.88±1.57, 271.00±1.00 and 171.63±90 mg/100g) than CH leaves (187.33±90, 118.05±65 and 9.12±55 mg/100g). Carcea et al., (2015) showed that spirulina contains many minerals and vitamins. The most common minerals that are found in spirulina are calcium, iron, zinc, potassium, magnesium, selenium, and many others. According to Nasef, (2018) the calcium, phosphorus, sodium, and magnesium values in chicory leaves were 100, 47.0, 45.0, and 30.0 (g/100g), respectively. The findings of Hamid et al., (2021) are also consistent with ours..

Fig. (1): Minerals of *Cichorium intybus* L leaves and dried *Spirulina plantensis* algae (mg/100g)
3.2. Biological evaluation of experimental rats which treated with two levels of CH leaves and dried SP algae

3.2.1. Body weight gain

The growth curve of experimental rats, final body weights and body weight gain of all rats’ groups are given in Fig (2) and Table (2). At the beginning of the investigation, initial body weight showed a non-significant change in all experimental groups. While final body weight of all rats’ groups was not significantly different except inducted group (+ve) was significantly (P≤0.05) decreased 194.0±8.27 compared with control (-ve) 252.2±6.22 these findings are consistent with those of Mada et al., (2019).

Dexamethasone (DEX) is a synthetic GC that is widely used as an effective treatment option for a variety of inflammatory diseases (Vandewalle et al., 2018). However, administration of DEX at moderate to high doses frequently results in a slew of unwanted side effects ranging from minor to severe complications (Nuti et al., 2019). The majority of attention has been focused on body weight loss as one of the primary indicators of the drug’s negative health effects (Bordag et al., 2015).

On the other hand, (6% dried SP, 10% CH leaves powder, 4% dried SP and 5% CH leaves powder) respectively occurred higher increased in body weight gain (BWG) 43.68±3.87, 42.72±2.24, 41.39±1.24 and 36.75±5.41 respectively compared to inducted groups(+ve) 12.79±1.48. This is consistent with the findings of Liu, et al., (2011) who discovered that compliance with GC treatment reduced craving and body weight. Various ratios of CH leaves powder and Dried SP algae administration were found to be effective in preventing body weight loss. The improved effect on body weight in dried SP groups could be attributed to Spirulina platensis’ unique blend of nutrients, which no single source can provide, such as B-complex vitamins, minerals, proteins, -linolenic acid, and super antioxidants such as -carotene, vitamin E (Kulshreshtha et al., 2008 and Holman and Malau-Aduli, 2012). The oral administration of SP to diabetic rats for 50 days resulted in a significant (p < 0.001) increase in BWG, indicating that SP significantly improved their general health status and metabolic mechanisms through effective glycemic control or gluconeogenesis reversal (Abdel-Daim 2014 and Yusuf et al., 2016). Furthermore, the improvement in body weight gain in rats fed chicory leaves is consistent with the findings of Urias et al.,
(2007) who revealed that chicory inulin is useful for appetite regulation.

Table (2): Mean body weight gain (g) of experimental rats which treated with two levels of CH leaves powder and dried SP algae

<table>
<thead>
<tr>
<th>Body weight (g)</th>
<th>Groups</th>
<th>CH leaves powder</th>
<th>Dried SP algae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (-ve)</td>
<td>Control (+ve)</td>
<td>5%</td>
</tr>
<tr>
<td>IBW</td>
<td>167.8±7.36a</td>
<td>172.0±6.96a</td>
<td>171.6±31a</td>
</tr>
<tr>
<td>FBW</td>
<td>252.2±22a</td>
<td>194.0±27c</td>
<td>234.6±6b</td>
</tr>
<tr>
<td>BWG/wk %</td>
<td>50.4±11a</td>
<td>12.79±48d</td>
<td>36.7±1c</td>
</tr>
</tbody>
</table>

Each value represents the mean value± SD. Mean's value in the same column sharing the different superscript letters are significant different at P ≤ 0.05. IBW= Initial body weight; FBW= Final body weight; BWG= Body Weight gain; WK: Week;

CH: *Cichorium intybus* SP: *Spirulina plantensis*
Fig. (2): Mean body weight gain (g) of experimental rats which treated with two levels of CH leaves powder and dried SP algae

3.2.2. Organs weight / body weight %

Osteoporosis is characterized by bone deterioration leading to the development of irregularities as a result of loss of osteoblasts (Baofeng et al., 2010). Studies have revealed marked degradation in the femur bone of experimental animals treated with glucocorticoids (Reid et al., 1992)

Results in Table (3) indicated the effect of two levels of CH leaves powder and dried SP algae on the relative organs weight of rats suffering from osteoporosis. Femur bone weight/body weight % of the (+ve) control group showed a significant decrease $P \leq 0.05$ than the (-ve) control group 0.76 ± 0.17 and 1.24 ± 0.25
Glucocorticoids have a negative impact on bone formation, turnover, and dependability. Cortisol's action began with osteoblasts, reducing replication and impairing differentiation and maturation, resulting in decreased bone formation (Ito et al., 2007). It also includes an increased bone resorption component. In the early stages of glucocorticoid treatment, decreased bone formation combined with increased resorption causes a rapid loss of bone integrity and may increase the risk of fracture (Canalis et al., 2004).

Significant difference $P \leq 0.05$ in Femur bone weight/body weight % among the (+ve) control group and the groups treated with two levels of CH leaves powder and dried SP algae. The best result was recorded for groups treated with 10% CH leaves powder and 6% dried SP algae (1.43±.21 and 1.29±.24, respectively). Poormoosavi et al., (2019) showed that no significant differences were observed regarding the body and liver weight between the groups receiving S. platensis treatment compared to the controls ($P \leq 0.05$). Furthermore, the experiments had no significant effect on the weight of the kidneys.

As shown in the table (3) It could be noticed that, liver and kidney weight/body weight % of the (+ve) control group (4.26±.34 and .99±.09, respectively) showed a significant increase $P \leq 0.05$ than the (-ve) control group (2.93±.26 and .54±.14, respectively) these results agree with Mada et al., (2019). Also, Significant difference $P > 0.05$ in liver and kidney weight/body weight % among the (+ve) control group and the groups treated with two levels of CH leaves powder and dried SP algae. The best result was recorded for groups treated by 10% CH leaves powder and 6% dried SP algae (2.91±.41 and.48±.04) and (2.93±.50 and 54±.15) respectively. These results may be due to the plant (chicory) having soluble fiber, it has a hypolipidemic effect and is not hydrolyzed by the digestive enzymes. These results agree with Alwan (2009) who reported that adding 1% or 5% chicory water extract to the diet of hypercholesterolemic rats reduced liver weight and found no significant difference in liver weight in the treated group when compared to the normal control group.

Concerning the mean value of heart weight/body weight %, it could be noticed that the (+ve) control group showed a significant
increase \(P \leq 0.05 \) than the (-ve) control group (1.45±.19 and 45±.06, respectively). All treated groups showed a significant difference \(P \leq 0.05 \) in heart weight/body weight % as compared to the (+ ve) control group. The best result was recorded for groups treated with 10% CH leaves powder and 6% dried SP algae (0.36±.06 and 0.34±.02, respectively).

Table (3): Mean organ weight/body weight (%) of experimental rats which treated with two levels of CH leaves powder and dried SP algae

<table>
<thead>
<tr>
<th>Organ’s weight (%)</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (- ve)</td>
</tr>
<tr>
<td>Femur bone</td>
<td>1.24±.25ab</td>
</tr>
<tr>
<td>Liver</td>
<td>2.93±.26b</td>
</tr>
<tr>
<td>Kidney</td>
<td>.54±.14bc</td>
</tr>
<tr>
<td>Heart</td>
<td>.45±.06b</td>
</tr>
</tbody>
</table>

Each value represents the mean value± SD. Mean’s value in the same column sharing the different superscript letters are significant different at \(P \leq 0.05 \). CH: *Cichorium intybus*
SP: *Spirulina plantensis*

3.2.3. Biochemical analysis

The main components of the hydroxyapatite crystal, which is the basic building block of bone minerals, are calcium and phosphate. The mineral hydroxyapatite is important for bone's compressive strength, but the collagen framework within which the hydroxyapatite crystals lie dictates bone size and shape (*Grandfield et al., 2018*).

A significant decrease \(P \leq 0.05 \) was observed in the table (4) of serum ionized calcium and femur bone mineral content (calcium and phosphors) mean values in the control group (+ve) (1.20±.1, 7.75±.05 and 4.53±.02) respectively when compared with the healthy
group (control -ve) (1.75±.18, 8.45±.13, and 5.47±.15) respectively. Glucocorticoids impair bone metabolism by suppressing calcium absorption through the digestive tract as well as calcium reabsorption through the kidney, which can result in hypocalcaemia and, in turn, hyperparathyroidism later on (Weinstein, 2011). Glucocorticoids influence bone mineralization by suppressing Tran's repression of matrix proteins collagen I and osteocalcin.

Furthermore, GCs have a negative impact on muscle mass and strength, resulting in muscle atrophy (Canalis et al., 2007). Signs of osteoporosis were similarly observed in the present study as manifested by reduced serum and bone minerals (Ca, P) coupled with the decline of BMD in DEX-treated rats. This could be a consequence of alterations in Ca and P renal excretion (Hozayen et al., 2016) which may derive bone tissue toward enhanced resorptive activity. In this concern, several studies have been carried out to verify the benefits of natural vegetables and fruits for preventing bone loss (Stacewicz-Sapuntzakis, 2013).

The present research showed that treated with two levels of CH leaves powder and dried SP algae had a significant effect on serum ionized calcium and femur bone mineral content (calcium and phosphors). The best result was recorded for groups treated by 10% CH leaves powder and 6% dried SP algae (1.8±0.1, 8.49±.06, and 5.73±.05) and (1.63±.37, 8.30±.1, and 5.67±.25) respectively. Chicory administration significantly increases Ca absorption and results in a significant increase in bone mineral content, which leads to parathormone (PTH) suppression. (Holloway et al., 2007). This could be because chicory contains inulin, which improves Ca absorption in two ways. The first method involves increased calcium solubility in the colon as a result of decreased pH caused by inulin fermentation. Second, osmotic effects increase fluid transfer in the colonic lumen, increasing permeability between intracellular enterocyte junctions and thus facilitating diffusion. These findings are consistent with those of Roberfroid et al., (2002) which demonstrated that chicory inulin increases the absorption of calcium and increase the mineral parameters in the bones of the body. In addition, treatment with non-digestible fructans successfully increases Ca absorption and results in a corresponding increase in
bone minerals which is followed by a suppression of PTH (Holloway et al., 2007).

Spirulina has been dubbed a powerful food because it is high in proteins, carbohydrates, polyunsaturated fatty acids, sterols, and other essential nutrients such as calcium, chromium, iron, zinc, magnesium, manganese, and selenium. It contains vitamin B12, vitamin E, ascorbic acid, tocopherols, and a wide range of natural mixed carotene and xanthophyll phytopigments (Ojiakoi and Nwanjo, 2005). According to Ekantari et al., (2017), rats fed a vitamin D deficient diet and supplemented with spirulina (13 percent spirulina per weight of the diet for 8 weeks) had higher calcium, magnesium, phosphorus, and alkaline phosphatase levels in their serum than the untreated group. Because of the higher mineral absorption coefficient, the treated rats' femur length and diameter, as well as bone mineral density, were also increased compared to the untreated rats. Spirulina is known to contain phycocyanin and kaempferol, which can reduce inflammation, as well as chitosan, which can increase bone mineralization by regulating the associated genes in the mineralization process and calcium-binding proteins during the osteoblast cell differentiation process in Metabolic syndrome MSCs. (Syarina et al., 2015)
The Scientific Journal of Specific Education and Applied Sciences

Table (4): Serum ionized calcium and femur bone mineral content (calcium and phosphors) of experimental rats which treated with two levels of CH leaves powder and dried SP algae

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>(-ve)</td>
</tr>
<tr>
<td>Ca++(mg/dl)</td>
<td>1.75±.1</td>
</tr>
<tr>
<td>Femur bone mineral content</td>
<td></td>
</tr>
<tr>
<td>Calcium (mg/g ash)</td>
<td>8.45±.1</td>
</tr>
<tr>
<td>phosphors (mg/g ash)</td>
<td>5.47±.1</td>
</tr>
</tbody>
</table>

Each value represents the mean value± SD. Mean's value in the same column sharing the different superscript letters are significant different at P ≤ 0.05.

CH: Cichorium intybus

SP: Spirulina plantensis

The activity of AST and ALT are indicators of hepatotoxicity (Azab et al., 2013). Increased activity of serum liver enzymes (AST, ALT) may be due to the deterioration of the functional integrity of the liver cell membranes and the infiltration of these enzymes outside the cell (Ibrahim et al., 2011). Alkaline phosphatase (ALP) is a biochemical indicator for the osteoid formation and mineralization (Chapurlat and Confavreux, 2016).

Results of liver enzymes for all groups are presented in Table (5). Osteoporotic animals plus fed on standard diet (control +ve) showed severe a significant (P≤ 0.05) elevation of serum AST, ALT and ALP levels till the end of the experiment (149.97±0.50, 70.10±0.53 and 180.83±0.60, respectively) compared with a healthy group (control -ve) (65.57±0.56, 32.88±0.92 and 84.14±0.99, respectively). This result agrees with the studies of Tanyara et al., (2019) and Kamel et al., (2016). Also, the present research, are in line with Xu et al., (2012), they revealed that sedate initiated liver damage is for the most part brought about by the utilization of
antibacterial and glucocorticoids and comprises around one-fifth of hospitalized patients with ALT *Drake et al.*, (2010) It was also discovered that prenatal glucocorticoid overexposure in rodents increases hepatic lipid aggregation with steatosis. According to research, elevated levels of alkaline and acid phosphatases play a role in the pathogenesis of several bone diseases (*Millán and Whyte, 2016*). Elevated ALP levels may contribute to a faster bone turnover rate, which is characterised by an increase in bone formation and resorption, but bone resorption is more prevalent (*Feng et al.*, 2014).

The present research showed that significant decrease in indices of Liver enzymes such as AST, ALT and ALP, (10% CH leaves powder, 6% dried SP algae, 5% CH leaves powder and 4% dried SP algae groups respectively when compared with the (control +ve) group. At the final, it could be observed that the best result for 10% CH leaves powder and 6% dried SP algae (65.72±0.46, 32.16±0.17 and 83.35±0.25) and (64.86±0.23, 32.25±0.45 and 82.95±0.18) respectively.

The discovery that Spirulina platensis reduced serum AST, ALT, and ALP activity is consistent with the findings of *Bhattacharyya and Mehta*, (2012) *Gargouri et al.*, (2016a, b) and *Hozayen et al.*, (2016). This could imply that Spirulina protects against liver dysfunction and promotes tissue regeneration (*Gargouri et al.*, 2016b). According to *Gargouri et al.*, (2016b) the liver protective effect of Spirulina may be related to the preservation of the cell's structural integrity, such as the prevention of oxidative DNA damage through the stabilisation of the plasma membrane and thus the repair of hepatic tissue damage. According to *Bhat and Madyastha* (2001), phycocyanin, a blue pigment found in the structure of Spirulina, plays a special protective role against DNA damage. According to *Nasef* (2018) Chicory leaves powder at concentrations of 2.5, 5, and 10% decreased serum AST, ALT, and ALP significantly (p<0.05) when compared to the +ve group. Our findings are also consistent with those of *Balasubramanian et al.*, (2013), *Helal et al.*, (2011) and *Ahmed et al.*, (2009) who found that chicory treatment reduced ALT and AST activities in rats.
This decrease could be attributed to the presence of isoflavones, polyphenols, and other antioxidants, which aided in the reduction of liver injury.

Table (5): Liver enzymes of experimental rats which treated with two levels of CH leaves powder and dried SP algae

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
<th>Control (ve)</th>
<th>Control (+ve)</th>
<th>CH leaves powder</th>
<th>Dried SP algae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>10%</td>
<td>4%</td>
<td>6%</td>
</tr>
<tr>
<td>AST (U/I)</td>
<td></td>
<td>65.57±0.56d</td>
<td>149.97±0.50a</td>
<td>92.44±0.11b</td>
<td>65.72±0.46d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td></td>
<td>83.14±0.92c</td>
<td>64.86±0.3e</td>
</tr>
<tr>
<td>ALT (U/I)</td>
<td></td>
<td>32.88±0.92d</td>
<td>70.10±0.53a</td>
<td>44.55±0.44b</td>
<td>32.16±0.32d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.48±0.45c</td>
<td>32.25±0.3e</td>
</tr>
<tr>
<td>ALP(U/I)</td>
<td></td>
<td>84.14±0.99de</td>
<td>180.83±0.60a</td>
<td>95.55±0.51b</td>
<td>83.35±0.25d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94.52±0.31c</td>
<td>82.95±0.18e</td>
</tr>
</tbody>
</table>

Each value represents the mean value± SD. Mean's value in the same column sharing the different superscript letters are significant different at P ≤ 0.05. CH: Cichorium intybus

SP: Spirulina plantensis
AST: aspartate amino transferase
ALT: alanine amino transferase
ALP: alkaline phosphatase

Renal insufficiency or age-related loss of renal function is common in patients with osteoporosis (Cesini et al., 2012). Patients with chronic kidney disease (CKD) generally have low BMD due to osteoporosis, which puts them at an increased risk of fracture (Lydiaa et al., 2015). Results of kidney function for all groups are presented in Table (6). Osteoporotic animals plus fed on standard diet (control +ve) showed significant (P ≤ 0.05) increase of serum urea, uric acid and creatinine levels till the end of the experiment (67.00±1.00, 1.89±0.33and 1.06±0.19) respectively compared with a healthy group (control -ve) (37.66±2.05, 0.99±0.22 and 0.48±0.03) respectively. The kidney plays an important role in GC metabolism and is the primary source of cortisol production in humans. Reduced 11b-HSD2 activity contributes to the pathophysiology of salt and water retention, as well as hypertension in renal failure. Glucocorticoids have a significant impact on renal function, including an increase in glomerular filtration rate (Mangos et al., 2003).
Our results showed that supplemented diet by two levels of CH leaves powder and dried SP algae had a significant effect on serum urea, uric acid and creatinine, (10% CH leaves powder, 6% dried SP algae, 5% CH leaves powder and 4% dried SP algae groups respectively when compared with the (control +ve) group. At the final, it could be observed that the best result for 10% CH leaves powder and 6% dried SP algae (37.33±2.50, 1.03±0.31 and 0.46±0.05) and (37.66±2.00, 1.10±0.08 and 0.45±0.3) respectively. Chicory, according to Wang et al., (2019), slows renal reabsorption by controlling the expression of urate transporters in fructose-induced hyperuricemia. These findings are supported by Jin et al., (2018) who investigated the effects of chicory on serum kidney functions and in vitro cell verification and found that chicory extract reduces urea, uric acid, and creatinine elevations in hyperuricaemic rats with kidney damage. Also, Lin et al., (2014) reported that Cichorium intybus could reduce serum uric acid levels and inhibit liver xanthine dehydrogenase and xanthine oxidase.

Furthermore, in a study conducted by Martin and Sabina (2016), spirulina reduced the effect of anti-tuberculosis drugs (isoniazid and rifampicin) on changes in the kidneys of Wister rats. Spirulina (400 and 800 mg/kg/day) treatment reversed kidney injury by lowering serum creatinine, urea, uric acid, and acid phosphatase levels. In addition, Balasubramanian et al., (2013) discovered that spirulina significantly reduced elevated creatinine and urea levels. It's possible that spirulina, which has antioxidant properties, improved renal function by slowing the oxidative stress-induced decline in kidney function.
Table (6): Kidney function (mg/dl) of experimental rats which treated with two levels of CH leaves powder and dried SP algae

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
<th>Control (-ve)</th>
<th>Control (+ve)</th>
<th>CH leaves powder</th>
<th>Dried SP algae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control (+ve)</td>
<td>CH leaves powder</td>
<td>Dried SP algae</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH leaves powder</td>
<td>Dried SP algae</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Urea (mg/dl)</td>
<td></td>
<td>37.66±2.05b</td>
<td>67.00±1.00a</td>
<td>41.66±2.04b</td>
<td>37.33±2.04b</td>
</tr>
<tr>
<td>Uric Acid (mg/dl)</td>
<td></td>
<td>0.99±0.22a</td>
<td>1.89±0.33b</td>
<td>1.14±0.04b</td>
<td>1.03±0.12a</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td></td>
<td>0.48±0.03b</td>
<td>1.06±0.33a</td>
<td>0.59±0.04b</td>
<td>0.46±0.01b</td>
</tr>
</tbody>
</table>

Each value represents the mean value± SD. Mean's value in the same column sharing the different superscript letters are significant different at P ≤ 0.05. CH: Cichorium intybus, SP: Spirulina plantensis

3.3. Bone mineral density and bone mineral content assay

BMD is an indicator for the detection of osteoporosis; this parameter gives knowledge concerning the quantity of minerals in bone, which is only one component of bone strength (Friedman, 2006). In the present study, the BMD and BMC were significantly decreased in osteoporotic animals plus fed on standard diet (control +ve) (0.04±0.01 and 0.079±0.04, respectively) compared with the healthy group (control -ve) (0.153±0.03 and 0.159±0.04, respectively) as showed in Table (7). Research has shown that calcium failure can reduce BMD and weaken bone strength and long-term calcium deficiency can lead to osteoporosis (Engstrom et al., 2012).

Our results showed that supplemented diet by two levels of CH leaves powder and dried SP algae had a significant increase in BMD and BMC, (10% CH leaves powder, 6% dried SP algae, 5% CH leaves powder and 4% dried SP algae groups respectively when compared with the (control +ve) group. At the final, it could be observed that the best result for 10% CH leaves powder and 6% dried SP algae (0.152±0.03 and 0.145±0.02) and (0.146±0.01 and
0.135±0.03) respectively. BMD of the distal femur and proximal tibia in rats, which are rich in trabecular bone, was in fact increased by the spirulina treatment. One of the reasons for this appears to be spirulina’s high content of minerals. Ishiml et al., (2006) proposed that spirulina consumption reduced BMD in rodent trabecular bone under estrogen-deficient conditions.

Chicory leaves are high in anthocyanins, vitamins A and C, as well as calcium, phosphorus, and inulin-type fructans, which improve bone health by increasing bone mineral content (BMC) and bone mineral density (BMD) (Weisstaub et al., 2013). Previous research found that chicory supplementation improves bone mineral content (BMC), increases Ca absorption, and alleviates the reduction in bone mineral density (BMD) and mineral content that occurs after ovariectomy or gastrectomy in rats (Hozayen et al., 2016)

Table (7): femur mineral density (BMD) and bone mineral content (BMC) assay of experimental rats which treated with two levels of CH leaves powder and dried SP algae

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control (-ve)</td>
</tr>
<tr>
<td>BMD (g/cm²)</td>
<td>0.153±0.003a</td>
</tr>
<tr>
<td>BMC (g)</td>
<td>0.159±0.04a</td>
</tr>
</tbody>
</table>

Each value represents the mean value± SD. Mean's value in the same column sharing the different superscript letters are significant different at P ≤ 0.05. CH: Cichorium intybus SP: Spirulina plantensis BMD: bone mineral density, BMC: bone mineral concentration.

3.3. Histopathological examination and X-ray

Femur bone was examined by X-ray, a histological approach and the photomicrographs of hematolxyn – eosin-stained femur is illustrated in Figures (3 to 6).
Femur bone

Microscopically, the left femur of rat from (control –ve) group showed the normal histological structure of the thickness and length of the trabecular with normal wide bone marrow spaces in between were recorded in (Fig.3). Contrary, the osteoporotic group (control +ve) severe osteoporosis was detected in the trabeculae as diminish in the thickness and length with the wide area of bone marrow spaces in between were recorded in (Fig.3). Trabecular bone constitutes a major portion of the proximal femur, and it is highly sensitive to glucocorticoids (Laan et al., 1993). Our radiographic results confirmed these histopathological results as, lateral radiographic view of tibia, fibula and the distal extremity of femur showing normal radiographic findings and architecture (a) and anterior-posterior view of the tibia and distal extremity of the femur showing normal radiographic findings and architecture (b) in (control –ve) group were recorded in (Fig.4). Furthermore, lateral radiographic view showing demineralization and thinning of fibula and bony loss of tibia (arrow) and radiolucent area of femur (arrow) (a) and anterior posterior view showing demineralization and thinning of femur, tibia and fibula (b) in (control +ve) group (Fig.4). Glucocorticoids (GC) administration for three weeks revealed bone loss of different part such as fibula, tibia and femur in addition to bone demineralization and thinning of femoral cortex in rats, disappear of cortex of tibia in others and fibula and these agree with the observations of Hallberg et al., (2009) and Sipos et al., (2015). Bone health assessment, especially at the femur, is important for decision making in osteoarthritic patients. Osteoarthritis (OA) which affects the hips is the most common form of arthritis (Breedveld, 2004).
Fig. 3. Photomicrograph of femur sections in (control -ve) and control +ve) groups (H&E), (control –ve) group revealed the normal histological structure of the thickness and length of the trabecular, the osteoporotic group (control +ve) Sever osteoporosis in the trabeculae as diminish in the thickness and length with a wide area of bone marrow spaces in between
Fig. 4. Radiographic of lateral and anterior-posterior in (control -ve) and control +ve) groups.
Femur bone of animals affected by DEX and fed on (5% CH leaves powder) mild form osteoporosis was observed in the bone trabeculae as recorded in (Fig.5). In contrast, no histopathological alteration in femur bone was observed in the animals affected by DEX and fed on (10% CH leaves powder) in (Fig. 5). Our radiographic results confirmed these histopathological results as, lateral radiographic view showing moderate demineralization and thinning of fibula and bony loss of tibia (arrow) (a) and anterior posterior view showing demineralization and thinning of femur, tibia
and fibula (b) in (5% CH leaves powder) group were recorded in (Fig.6). Furthermore, lateral radiographic view showing normal femur, tibia and fibula (a) and anterior-posterior view showing normal femur, tibia and fibula (b) in (10% CH leaves powder) group (Fig.6). Researchers have shown that the phenolic compounds in various plant species can modulate the functions of the osteoblastic cells, including their maturation and proliferative capacity, by increasing the activity of alkaline phosphatase and calcium deposition in the extracellular matrix (Hagiwara et al., 2011). Chicory increases the production of insulin 1 like growth factor-1 (IG-F) and stimulates osteoblastic activity through an estrogen receptor-mediated action, and thus performs its antiosteoporotic effect, which is known to increase osteoblastic activity (Rasheed et al., 2009).

Femur bone of animals affected by DEX and fed on (4% dried SP algae) showed diminished in the thickness and length of the bone trabeculae with wide areas of bone marrow spaces in between as recorded in (Fig.5). In contrast, no histopathological alteration in femur bone was observed in the animals affected by DEX and fed on (6% dried SP algae) in (Fig.5). Our radiographic results confirmed these histopathological results as, lateral radiographic view showing demineralization and thinning of fibula and bony loss and irregular surface of tibia (arrow) (a) and anterior-posterior view showing demineralization and thinning of femur, tibia and fibula (b) in (4% dried SP algae) group were recorded in (Fig.6). Furthermore, lateral radiographic view showing normal femur, tibia and fibula (a) and anterior posterior view showing normal femur, tibia and fibula (b) in (6% dried SP algae) group (Fig.4). Osteoporosis is one of the most common disorders associated with aging and results in bone fracture, this being a substantial public health problem. Specific marine plants have recently attracted attention for their ability to improve bone metabolism, since they are rich in minerals and growth factors. (Hidaka et al., 2004). An epidemiological study in Taiwan has shown a seaweed diet to be a significant variable in a multiple linear regression analysis of BMD (Shaw, 1993). Devesh et al., (2012) and Gupta et al., (2010) reported an increase in trabecular bone thickness as well as a reduced number of resorptive pits in the femur of diabetic animals treated with spirulina (500 mg/kg/day for 21 days).
Fig. 5. Photomicrograph of Femur bone in (5 & 10% CH leaves powder) and (4 & 6% dried SP algae) groups (H&E).
Fig. 6. Radiographic of lateral and anterior posterior in (5 & 10% CH leaves powder) and (4 & 6% dried SP algae) groups

5% CH leaves

10% CH leaves

4% dried SP algae

6% dried SP algae
CONCLUSION

The current study found that supplementing the diet with two levels of CH leaves powder and dried SP algae increases bone mineral density (BMD and BMC), serum and bone minerals (Ca and p), and improves bone histological architecture. This may occur via similar intracellular pathways involving the suppression of oxidative stress and the enhancement of antioxidant defence mechanisms, implying that chicory and Spirulina represent a promising therapeutic option for the prevention of Glucocorticoid (dexamethasone)-induced osteoporosis, and it is consumed as a functional food and safe nutritional supplement.
References

Grandfield, K.; Vuong, V. and Schwarcz, H. (2018): Ultrastructure of bone: hierarchical features from nanometer to micrometer
scale revealed in focused ion beam sections in the TEM. Calcif Tissue Int 103:606–616.

Hassan, H. A., & Yousef, M. I. (2010). Ameliorating effect of chicory (Cichorium intybus L.) supplemented diet against nitrosamine precursors-induced liver injury and oxidative stress in male rats. Food and Chemical Toxicology, 48(8-9), 2163-2169. doi.org/10.1016/j.fct.2010.05.023

intybus L. in glucocorticoid-induced osteoporosis in rats. BMC Complementary and Alternative Medicine, 16:165

Nasef, A. N. (2018). Study The Effect Of Chicory (Cichorium Intybus, L.) Leaves Powder on Some Biochemical and Biological Parameters of Hepatotoxicity Induced By Ccl4 in

تأثير مسحوق أوراق الهندباء البرية وطولب الأسبرولينا المضاد لتشايشة العظام

عن إناث الفئران البيضاء الناجم عن الدексاميثازون

صفاء طلعت جوهري

قسم مقدم احتياج المنزل – تغذية وعلوم أطعمة – كلية التربية النوعية – جامعة عين شمس – القاهرة – مصر

العنوان

موجز

هشاشة العظام هو مرض متعدد العوامل يصيب الهيكل العظمي، ويشير انخفاضها في كتلة العظام واضطراً إلى البيئة الدقيقة للأنسجة العظمية. ويرى البحث الحالي أن تأثير المضاد لتشايشة العظام يظهر بتركيز الكيميائي أن طحالب الأسبرولينا المخففة تحتوي على نسبة عالية من البروتين والدهون مقارنة بوراق الهندباء التي تتوزع مكانها على نسبة عالية من الكربوهيدرات والألياف والرماد والروبيطة أكثر من طحالب المجموعة. كما أن الأسبرولينا وأوراق الهندباء غنية بالكالسيوم والفوسفور (134 ± 29, 14 في المئة / 100 جم) و(142 ± 29, 14 في المئة / 100 جم) على التوالي.

البيضاء إلى مجموعتين، المجموعة الرئيسية الأولى (8 فئران) تم تغذيتها الأساسيّة (مجموعة ضابطة سابلاً)، المجموعة الرئيسية الثانية (40 فئران) حقن عضليًا بالديكساميثازون في جرعة (7 مجم / كجم من وزن الجسم) مرة واحدة أسبوعيًا لمدة تصل إلى أربعة أسابيع بالإضافة إلى في جميع الفئران، تم تقسيمها إلى مجموعتين فرعية لكل منها ثمانية فئران، على النحو التالي: المجموعة (2) التي تتغذى على الوجبة الأساسية (مجموعة ضابطة موجبة)، المجموعة (1) تتغذى على الوجبة الأساسية مضاف لها 4% طحالب الأسبرولينا المخففة، المجموعة (4) تتغذى على الوجبة الأساسية مضاف لهما 6% طحالب الأسبرولينا المخففة، المجموعة (5) تتغذى على الوجبة الأساسية مضاف لهما 10% طحالب الأسبرولينا المخففة.

أظهرت النتائج أن جميع مجموعات هشاشة العظام التي عولجت بنبض مختلفة من مسحوق أوراق الهندباء (50%) والأسبرولينا المخففة (6% أو 6% أدت إلى انخفاض معنوي في إنزيمات الكبد (أكالسين والكالسيوم والفوسفور في العظام والكالسيوم المتابعين وعندن العظام. وكذلك فحص الكثافة والمحتوى المغذي للعظام مقارنة بالمجموعة الضابطة الموجبة. واظهرت أفضل نتيجة للمجموعات المعالجة بـ 10% مسحوق أوراق الهندباء و 6% الأسبرولينا المخففة من ناحية أخرى، كشفت الأشعة السينية والتشريحة المرضية المجموعة الضابطة الموجبة بعد شهرين عن فقدان العظام لأجزاء مختلفة مثل بالإضافة إلى نزع المغذي من العظام وهشاشة العظام. أظهرت هذه النتائج أن مسحوق أوراق الهندباء وطحالب الأسبرولينا المخففة عالجت درجات من هشاشة العظام مقارنة بالمجموعة الموجبة.

الكلمات المفتاحية: هشاشة العظام؛ جلايكورتيكود؛ الهندباء؛ طحالب؛ دكساميثازون

السينية والتشريحة المرضية

المجلة العلمية للتربيّة النوعية والعلوم التطبيقية

The Scientific Journal of Specific Education and Applied Sciences

155